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NATTONAL ADVISCRY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE NO. 1384

A REVIEW OF BOUNDARY-LAYER LITZRATURE

By Neal Tetervin

SUMMARY

A concise nommathematical review of the subJject of houndary
layers is presented. The contents, although insufficient for +he
solution of specific problems, are sufficilent for an introduction
to the subject. A list of reference papers is given from vhich the
detailed knowledge necessary for the solubtion of specific problems
can be obtained. '

THIRODUCTION

The literature on the subjeot of boundar,” larers contains so
many papers of varying quality that it is difficult for a newcomer
to the subject to choose the papers that Provide the maximum gein in
kmowledge for the effort expended. Although references 1 and 2 pro=
vide detailed roviews of boundary-layer theory, no short nommathe-
matical summary is readily available.

The purpose of the present paper is to provide a short Sua Yy
that contains exact or approximate informstion that is believed to
be useful. The svmmary is confined to cases for which the rhysical
properties of the fluld are constant, that is, to incompressible
flow with no temperature effects. An introduction to boundary-layer
literature is provided, and reference paperes are listed from which
Information on subjects of special interest may be ovtained.

The material presented herein was originally presented as s
talk at Wright Fleld, Dayton, Ohio, on September 26, 1945.

BOUNDARY-LAYER TERMINOLOGY

Symbols

p density
u velocity component parallel to surface

v veloclty component perpendiculasr %o surface
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x distance along surface from lsading edge

y distance nomal to surface

p gtatlo pressure

1 coefificlent of viscosity

i) velocity component parallel to surface at outer edge of

boundary layer .

) : \

8 momentum thickness % (l - %) ay
0 /

3]
B¥ displacement thickmess (1 - % dy
0

S nominal thickness of boundary layer

Ts surface shearing stress

. : *

it ratlo of displacement thickness to momentim thicknesrm (-S—-)

q dynemic pressiure (5902)

¢ =2 (P.’E)l/ g

a2/ \v
v kinematic viscosity (%)
U, free-stream velocity

)
- | .
. l-&;l absolute magnitude of rate of change of U with x

x Reynolds nmumber (E%-_,_x_)



NACA TN No. 1384 3

c chord,
Uge
Rc Reynolds number =
T local shearing stress
1 mlxing length .
o
V., = .
* P
m exponent in formula for bouwmdary-layer velocity distribution
Ug value of u at y-= @
12
wso(3)
1 T
Rg Reynolds numbeyr (%—é
n exponent in formila for variation of velocity along surface
X' = .d;.x
dx
x=%X
U dx
k congtant in formula for variation of velocity along surface
t
u'v! = ,bJ_-_:E}w % u'iv' at
0
u' x-component of fluctuation veloclity
v' y-camponent of fluctuation veloclity
time

£ Ia
X von Karman's wniversal constant
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R,_, Reynolds number (%5-)
€ helght of roughness perticle
w angular velocltiy
8 radivs of disk
5* thickness of laminar sublsyer
D constant in surface-friction formula
23 congstant In surface-frietion formmla
& au
py Pohlhausen shape parsmeter | —— —=
v dx
C inflow velocity
Terminologzy

A boundary layer mey be defined as & reglon In the flow fleld
in which the viscous forces in the squation of motion are not all
negligible. (See appendix.) For flow over bodies at the Reynolds
numbers encountered. in applied aerodynamics, the reglon in which the
viscoug forces are not negligible ig confined %o a thin layer of
fluid next to the surface, the Prandtl boundary layer (refereonce 1).
The viscous forces are confined to this thin boundar; layer because
the space rates of change of shearing stress are large enough to
produce other than negligible viscous forces only in the thin surface
layer of fluid. In the absence of solid boundaries, boundary layers
occur where streams of fluld that move with dilferent velocitles are
in contact; for exawmple, Jets and wakes. Boundary layers may he
divided into two classes, laminar and turbulent. E

A laminar boundary layer is ocne in which the paths of the
particles of fluid never cross one another; the neilghloring layers
of fluid glide over one ancther as if the: were solid sheets ané all
interchange of momentum betwoen adjecent layers takes place only by
molecular motions. A turbulent boundary layer, oa the othor hand.
1s one in which the paths of the particles of fIulé.cross one another
and in which almost all of the interchenge of momentum betwsen
edjacent layers is caused by the irregular motion of small fluid
nasses.
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Tn order to dlscuss the boundary layer it is first reccsssry %o
define the terms velocibty profile, surface friction; boundary-layer
thickness, and separation point. A velocity profile is the curve
that gives the distribution of the component of velocity pzrallel to
the suxrface with disbance normal to the surface (fig. 1), In boundery-
layer theory the velocity camponent parallel to the gurface 1s equal
to the magnitude of the tatal velocity because the welocilty component
normel to the swface is negligible. The suwrface friction is the
ghearinz stress between the fluild and ths solid hody.

The thickness of the bmmd.a:c;:,-' layer may ve defined as the dig-
tance, in direction normal to.the surface, at which the btobtal pres-

gure (P + —&-UE) differs by an arvibrary srall amovnt from the total
2

- pressure of the vndisturbed flew, At distances Trom the body greater
than 8, <the flow is asswued to be inviscld (fig. 2).

The meparation point is the point on thse svrface of the body atb
which the swface friction is zerc. Upetresm of the point the direc-
tion of Flow In the boundaxy laoyer next Lo the surface 1ls downsiream,
and dowmstream of the point the direction of flow in the bowndary
layer next to the surface is upstream (fizg. 3).

TAMINAR BOUNDARY TAYER

Methods of Calculetion

By the use of thse boundarr-~layer oquations of mobion together
with the condibions that the golutlions of the squations must satisfy
at the innmer and oubter edges of the boundary larer tue chiractér-
igtics of the laminar boundery layer over a hody may be Retermined
completely when the velocity disbtribution over the body outside the
boundary layer is known and ‘the Flow is such that the boundary-layer
approximations are applicable. In order to avoid the purely matie-
matical difficulties assoclated with the exact method of solutlon,
various approximate methods for the computatlion of the velocity
proflle, surface friction, boundary-layer thickness, and separation
point have been developed.

Von Kémén momentum equation.- The von Ka'rma'n momentim equa-~
tion {reference 3) results from the application of the momentum
thoorem to boundary-layer flow and makes it possible to compubte the
boundary=~layer thickness over & body with an arbltrary pressure dis-
tribution whethor the flow in the boundary leyer is laminar or
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turbiilent if the{yaridtion of the boundary*layer velocity profile
and surface friction over the body is knowni

The equation is obtaineble by two methods: by appliying the
momentum principle to a box, the lower side of which extends for an
1nfinitesimal distance along the solid surface, the upper side of
which is the nominal thicknese of the boundary layer, end tho gldee of
which are planes perpendicular to the body surface (appendix}, or
by integrating the boundary-layer equation of mot;on with resyect
to the distance normal to the surface. The von Karmén momentum
equation contains the same assumptions as +the Prandtl boundary-layer
equations {appendix) and may be wribten as (appendix)

R .
=

QM:&*Q+T (1)

T éx dx o

The quentity O, wiere

s . s
U0 = oU udy - ¢ W ay
0 0

is called the momentum thiclmess and is a length of such magnitude

that pUQG represents the difference beitween the rate of momentum
flow that would exist if the mass flowing through a boundary-layer
crogg pectlion were moving with the velocity at the boundary-layer

edge and the actual rate of momentum flow through the bouandary-layer
. crogs section. ' : .

The quantity &%, wvhers

pUB¥* = pUB = p u &y
o .

18 called the displacemeént thickness and is a length of such magni-
tude that fluid flowing through 1t with the boundary-layer edge
velocity U produces a rate of mass flow equal to the difference
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betwoen the rate of mass flow which would sxist if the fluid through
a croms section of the boundary layer were flowing with the boundary-
layer edge veloclty and the actual rate of mass flew through the
cross section of the boundary layer.

Equation (1) indicates that the effect of pressure gradient on
the momentum defect of the fluid flewing through the boundary layer
is directly proportional to the displacement thickness of the boundary
layer.

For use in the Pohlhausen method ’and for the computation of
boundary-layer thicknesses, the von KArmin equatien is written as

8% o

— s g:-—-———
dx T & o

Pohlhaugsen 's method.- The Pohlhausen method, an approximate
method based on the von Karmin momentum equation has been widely
used and 13 useful for obtaining qualitative information. The
purpose of the Pohlausen method (reference 1, pp. 108-112) is to
campute the characteristics of the laminar boundary layer in two-
dimensional flow when the pressure distribution oubslde the boundagry
layer 1ls & knewn function of the distance along the nurface. Ths
method is based on the assumption that all laminar bowmdary-lsyer
velocity profiles are given by a fourth-degree polynomisl. Pohlhausen
ehose a fourth-degree polynomial after trying first-, second-, and
third-degree polynomials, beceuse the fourth-degree polynomial gave
better agreement between his method and the exact Blasius solution
for the wvelocity profile and skin friction on a flat plate than
polynomials of lower degree. The coefficients of the fourth-~degres
polynomial are chogen te make the equation for the velocity profile
satlsfy the boundary-layer equation ef motian at the inner and outer
sdges of the boundary layer. The reault.is sn equation For the '

2 .
velocity mrofile L f()\., Z) where A = g -d-:g- (See appendix.)
U 3] Vv dx
The veloclty profiles are thus a single-perameber famlly of curves
in which the parameter A dJdepends on the previous history of the
boundary layer only throuch the thickness 8. Ths parameter A is
ap
D =

proportional to - (eppendix), the ratio of the umbalanced
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horizontal pressure force acting on the small box uvsed in deriving
the von Kermén momentum equation to the ghearing etress acting on
the surface side of the box. The parameter A can be ghown to be
independent of R (eappendix). For the interior of the boundary

layer the equation of motion is ignored, but the von Kérmin momentum
equation ig satisfied. By satisfying the von Kérmdn momentum equa-
tion, the digtridbublon over the body surface of the velocity profile,
boundary-layer .thickness,. surface friction, snd surfmce-prsgsure
dlstribution is made consistent with the momentum theorem.

To obtain the boundary-layer characteristice over the suriace,
the differential squatlon resulting from the substitutlon of the
equation for the velocity profile into the von Kérman equation 1s
sclved (reference 1, pp. 108-112). The method does not suffer
from serious Inaccuracies for 0 <A < 12. For .flow over a flat
plate, A = 0, the skin frictlion differs from the exmct value by

only 3~ percent. When, however, the pressure oubslde the boundary

layer risss in the direction of filow, A <0, +the nmothcd becumes
inaccurate. An investigation of the reason for the inamccuracy of

the Pohlhausen method {reference 4) leads to the conclusion that an
inherent characteristic of ths method is the late predilction of the
separation point because the fourth-degres polynomial for the velocity
distribution is not a good methematical substitute for the actual |
veloclty profiles obtmined in the exact solutions. Althcugh the
method 1s inasccurate in an adverse pressure gradient, it may often
be vsed to obtain rapidly qualitative resultd concerning the effects
on the velocity profile and surface friction of. changes ln the pres-
sure distribution or boundary-layer thickness (appendix). The method
ls an example of the fact that a theory whichirnores the equation of
motion in the interior of the boundary layer and therefore neglects
the acceleration terms in the equation of motion will meke the
boundary-layer vrofile dependsent on only the local conditions. A
complete theory would malte the space rate of change of boundary-
layer profile, rather than the profile itsel?. depend on the local
conditions.

Falkner's method.- The purpose of Falkner's methed (references b
and 5) is to provide for the practical computatlon of the surface
friction, momentum thickness, and displacement thickness of any two-
dimensional leminar boundary layer. The method is based on existing
tables of-solutions of the boundary-layer eguation for epecial types
of pressure dilstribution (reference 4). In order to obtain the

. , ' : 1 2
tables, Fallner expended the quantity ¢ =-( = (Ux\ in a Taylor
fa181

serles from the stagnaticn point with x a8 the independent varisable.
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The coefficients in the Taylor series are the derivatives of ¢
with respsct to x and were cbtained from the derivatives of the
complete boundary-layer equation at the staznation point, with the
help of kmown solutions of the special equation (reference L) to
which the complete squation reduces -in the vicinity of the stagna-
tion point. The series expansion for ¢ was then limited %o &

" t
speclal type of pressure distribution given by U = iR R ,
vhere X' 1is a constant. The separation point (¢ = 0) for the
speclal type of pressure distribution was determined by using the
Taylor serles expansions for ¢ After the separation polnts were
campubed, the sclutions for different pressure distributions of the
geme femlly were babulated and completed; these tebles form Shs
basis of the simplified method of calculation (reference 5).

The assumptions in Fallmer's simplified method are: (1) The
special form of the boundary-layer equation of motion represents
the conditions of flow near the stagnation point with good accuricy.
(2) The surface friction at a point is glven accuratsly by replacing
the actual pressure distribution by one of tine particular family of
pressure distribubtions; & new pressure dlstribubtion is chosen for

*
each point. (3) The relation H = g— is a function only of ¢,

and this function can bo determined from solutions of the boundary~
layer equatlon of mobion near the stzgnation poink.

The computation that must De made te solve a problem is simple
and rapid. It conslsts of evaluating a simple inbeural (reference 5)
from the given data and using the resulte of ths integrations with
the standard tebles t» obtain all the guantitiea thet are of inkerest.

The method is shown to be suitables for the computation of the
separatlon point by the good agreement between the computed separa-
tion point and the known separation point for two casss: One, an
exact solution of the poundary-layer squations and the other, an
experimental determination of the separation point (reference 5).

Hartree's method.- The purpose of Hartree's method is to pro-
vide an accurate method for the computation of ell the charactir-
istics of the laminar boundary layer. The basis of the method is
the integration of the boundary-layer esquation cf motion by tae
replacement of the equation of motion, a partial differential egqua-
tion, by en eguation involving Tinite differences and ordinary S
derivatives. The only approximation used, other thean those con-
tained in the boundary-layer egquation, is that & derivative may be
replaced by a finite differencs. :
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In order to compute the boundary-lsyer characteristics fram the
glven pressure distribution, the partial differsntial equation of"
motion is repleced by an apyroximately equivalent ordinary differ-
ential equation by replacing the derivatives with respect to one of
the variables by corresponding finite-difference ratlos. The deriva-
tives with respect to the other variable are integrated elther
mechanically or by some standard process for the numerical inte-
gration of ordinasry differential equations. Derivatives parallel
to the boundary are replaced by finite differences, and lntegratlion,
18 carried out along successive normals to the boundary at finite
intervals so that from the distribution of velociby acrosg one
section of the boundary layer the distributlion of velocity across
another section at an interval downstresam is calculated. The limit
to the accuracy obtainable with the method is the amouwnt of work,
vhich incresses with the accuracy desilred.

Critical Remarks

The Pohlhausen method is ussful for obtaining soneral quali-
tative information For elther Taroraplie or adverse pressure gradients
afid’ f@r‘SﬁEEining quanbitative information for favoreble pressure.
gradients. Falkner 's method seems to provide sufficient accuracy
Tor the solubtlon of problems and to be rapld. Hartree's method is
potentially more importent than any of the- obhers becauss if the
computational work can be decreased the method can provide an
accurate solutlon -of the boundary-layer equations. At present the
method 1z useful for providing sclutions for testing approximate
methods. The methods of references 6 to 12 seem to be inferior to
Faliner 's rapld method for general uss because they sither take
much longer or are not-so accurate.

When rapldity of computation is of prime importance, the pcsi-
tion of the separation point of the laminar boundary layer may be
estimated by replacing the velocity distribution over the body in
the regilon of adverse gradient by'a veloclity distribution with &
constant gradient. Approximate methods bssed on the use of a
congtant gradient mey be obtained from the Pohthausen method (refer-
ence 1, pp. 108-112), from the von Karmén-Milliksn method (refer=-
ences 7 and 8), and from the work of Howarth (reference 6). A
method based on Pohlhausen's work will usually predict separation
too far downstream and the methods based on the von Kéxymén-Milliken
method will usually predict separation too far upstroam. The
accuracy to be expected from & method based on Howarth's exact
solution is unknown but should be good vhen the acbual gradient
is close to constant.
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Exact Solutions of Boundary-Lsyer Fouations

Blasiue sélution of bbundary-layer eguation for flow over a
flat plate with zero pressure gradient.~ The results obtained from
the Blasius solution (reference 1, pp. 84-50) are

1) The thickness of the bdﬁndary layer is proportinnal
to x/Ug . : . '

(2) The drag coefficient based on the drag of one slde of a
1.32

vk

(3) The velocity ratio u/U, in the boundary layer is &
y'—'
Vxﬂ?Ub
Howarth.~ Howarth (reference 5} solved the boundery-lsyer
equations of motion for the came of flow cver a flat plate with the
velocity outeide the boundary layer decrsasing linearly in the direc-

tlon of flow and with zerc thiclmess of %the boundary lasyer at the
plate leading edge (fig. 4). The results obtalned wers '

Tlat plate and the projected asres of the plate is Cpy =

function of the single varisble 1n =

(1) The thiclkmesa of the boundary layer depends only on V;;?ﬁg

and on ‘Eg} EL.
ax | Up
(2) The veloclty ratio u/Ub in the boundery layer depends
only on =—Z—— and on 'EH',EL

V&U/Ub dx | Us

(3) The locel surface-friction cosfPficient To/Qq decreased

from an extremely large velue at the leading eége t0 zero at the
separation point.

(k&) The amount of velocity recovery &Ube tefore separation
(f1g. 4) 1s a constant and 1s independent of the Reynolds number snd
of the rapldity with which the velocity is reccvered, The rapility
of velocity recovery does not appeser because the initial bouniary-
layer thickness is zero.
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Yon Eéigé .~ Yon Kerman reduced the completeo equations of
motion for & rotating disk in laminar flow to a system of ordinery
differential equations and obtained approximate-solutions (refer-
ence 3). The results were .

(1) The boundary-layer thickness is constant over the rotating
digk and is = 2. 58\ —

mio

(2) The inflow velocity normal to and far from the disk
18 € = 0.708\|vw.

(3) The twrning moment required to rotate the disk for ‘both

2
gides 18 M = 3.68 a3p (wa)
ws? 2
v

Cochran (reference 2) molved the system of ordinery differential
equations exactly by s numerical process. As in any exact solution
of the equeticnsg of motion or of the equations of the boundary larer,
no. definite boundary-laysr thicknesge was obtained. - The constanht in
result (2) for C wes found to be 0.886 instead of 0.708 and the
constant in result (3) for M was found to be 3.97 instead of 3.68.

Conclusions from Prandtl boundary-layer equabicm.- Useful
information can be cbhained from the Prandtl boundary-layer egua-
tion as given by Falkner in reference 4 without obtaining solutions
of the equation. The conclusions are

{1) Por a fixed velocity distribution along the body and a
fixed point on the body, the nondimensional thickness 8f/c of the -

UAC
boundery layer is inversely proportional to \’:%- (fig. 5) .

(2) For . a fixed velocity distribution along.the Dody and a

. T
fixed point on the body, the local surface-friction coefficlent 52'
: q
UL
is inversely proportional to "%‘ = \|R,+ The total drag coeffi-

cient of the part of a body covered by a laminer boundary layer
therefore wvaries as 1 / Jﬁ;
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(3) For a given velocity distribubion over the body, the
separation point is independent of the Reynolds number Rpe This

fact is veluable in experimental work and in cases where computa-
tions of boundary-layer characteristics are made for mors than one
Reynolds number.

(L) Por a Ffixed velocity distribution aleng the body and a
Tixed point on the body, the curve of u/'U‘ dgainst y/ﬁ is
invarlable and is independent of the Reynolds number. The curve
of w/U against %\’Rc is invariable; this provides a good metiod
for testing whether & velocity distribution is laminer.

TURBULENT BOUNDARY LAYERS

In contrast to the smooth flow associated with laminar boundary
layers, a mlxing flow is generally associated with turbulent boundary
layers. In a turbulent boundary layer the momenbum interchange
between adjacent fluid layers is caused msinl; by the irregular
motion of small fluid masses. The information concerning turbulent
flow is largely empirical; whereas the infcrmabion four laminar rmotion
is obtained wholly from tho equations of mobion. '

Skin friction.- Empirical skin~friction formulss for flow .over
smooth flat plates with zero pressure gradient.and for flow in }-ipes
where a small favorable pressure gradient exista are avallable
(reference 1, pp. 135-154, and references 13 to 15). Fupirical
skin-friction formulss are also given by Goldstein in a British
peper of limited distribution. These references g.1ow that

(1) For equal Reynolds numbers the turbulént skin-friction
coefficient is greater than the laminar skin-friction coefficient.

(2) The turbulemnt skin-friction coefficient decroases lsss
rapidly than the laminar skin-friction coefficlent as the Reynolds
number Increases. )

The turbulent skin-friciion coefricient can be calculated from

-
the same relation as for laminsyr flow Ty = K & , 1if the velocity

T Ao

profile is known insids the laminar sublayer, thet ig, the region at ‘the
wall Iin which the velocity fluctuvations disappesr and. the flow is leminar
(reference 18). An estimate of the thicknese of the laminas sublayer,
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based on data from flow tircugh pipes, is glven by the relation
S50  11.6
+*

~

(reference 15).
v ‘r y
Tolaq

Shearing stress.~ No exact relation is known between the derlva-
tive of the averags veloclty at & point inside & turbulent boundary
layer and the shearing stress et the point. The zbsence of this
information forces recourse bto experiment to obbaila information con-
cerning turbulent flow. If a reletlon betireen the local shearing
ptress and the derlvative of the average local veloclty is agsumed
a method for camputing the characteristics of the turbulent bou.dary
layer may be devised. The method, however, will dopend on the
asgumption concerning the ghearing stress.

From the fundamental relation for the shearing stress in twrbu-~
lent flow T = -pu'v' (reference 1, pp. 119-134, and. reference 15),
Prandtl derived the mixing-length theory. an approximate theory that
relates the local shearing stress to the local density, the local
derivative of the average velocity, and the local value of a so-called

mixing length 1 (reference 15). The equation ig T = pi (B ) Zu'

¥/ 19F
The mixirg-length theory is based on the fact that if two adjacent
layers of fluld have different velocitles, the interchange Petween
the two layers of small masses of fluid that have the velocitiss of
the layers from which they come will tend to equalize the velocities
of the fluid layers. The tendency btoward equalization of veloclties
may be considered as being caused by an apparent shearing stress.
between the two layers. Von Kérmdn (reference 15) obtained an
approximate expression for the mixing lenszth as a funcbtion of the
local velocity derivatives and a universal constant by assuming
that the process of turbulence at any two points is similar and
differs only in the length and time scales. The relation can be
used to compute a velocity distribution in pipes that agrees very
well with the experimental velocity distribution.

Boundery-layer velocity profile. - The velocity profile for the
turbulent boundary layer diifers markedly in appearance Trom the
velocity profile of the laminar boundary layer (£ig. 6). At large
boundary-layer Reynolds numbers the turbulent velocity profile shows
an extremely rapid rise. in velocity in a very short distance. This
large slope at the wall causes the turbulent skin-frichtion coeffi-
olent to be higher than the laminar skin-friction coefficient.

When the pressure gradient along the surface is gzero or very
slightly favorable, such as on plates or in pipes, the velocity
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profile can be approximated by a 10garithm1c curve. The ecuation
1s (reference 15)

= A lOg-zgf + B

.*4 lF:_

and rollows from the assumptions that the shearing stress is conetant
across the pipe or boundary layer and equal to the wall shesring
stress end that the mixing length is given by the equation

1 = Ky

For a wlder range of pressurs gredients including those which are
adverse (that is, those in which the statlic pressure rises in the
direction of flow}, the velocity profile can be approximated by &
power cuxrve '

w /m
E_(al

Both of these equations for the velocity dietpributlion hecome inaccu-
rate at distances from the wall compearable to the thiclmess of the
laminar suvblayer. At the wall both equations incorrectly glve
infinite values of du/dy.

If the flow continues in an adverse precsure gradienn the
velocity profile undergoes & change from one having high velocities
neay the swface to one having low veloclties near the surface
(fig. 7 and reference 17).

For some purposes it seems permlssible to assume that the
turbulent boundary-layer proflles form a single-parameter family

* .
of curves and to.use the vatio H = S—, or the. velocity ratio u/U

at some fraction of the boundary-layer thickness from the surfacs,
as the parameter. The turbulent yelocity profiles veually found in
undisturbed flow are simple curves and may be spscified by any cne
of a number of suitably chosen parameters. The svggestion that
turbulent boundary-layer profiles form a single-paramster family of
curves first appeared in & paper by Gruschwitz (reference 18) in

vhlch the factor N, = 1 - (EQ) was used as a parameter.
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Seperation peoint.- In an adverse presswre gradient the turbu-
lent boundary layer will eventually seperate. For similar condl-
tions, howover, the percentage of the initial dynamlc presswe
which can be converted into shtatic rregsure in flow over esurfaces
covered by turbulent boundery layers is greator than in flow over
surfaces covered by laminar boundary layers. Because the mixing
between the inner and outer layers of fluld is much greaber in &
turbulent boundsry layer than in a laminar boundary layer, more
downstroam momentum 1s transferred from the outer layers of fluid
to the inner layers of fluid. The downstream mrmentum of the
£luid near the wall in turbulent flcw is therefore mainteined in
cages-ln.which fhe downstresm momentum of laminar flow would bo
oxhaunsted by the surface shear and separatlon would occur.

Only empirical methods are available for estimating the
geperatlion point of turbulent boundary layers. Of all the methcds
(refergnce 1, pp. 155-1€2; references 17 to 22; and Garner's method
which 1s givsn in a British paper of limited distribubtion) the two
which seem to be most useful Icr prsdlctling the behavior of the
turbulent boundary layer are those of Garner and reference 17. The
Gruschwitz method (referemnce 18) introduced _the idea of a gingle-
berameter femily of curveg for the velccity profiles of the turbu-
lent boundary layer and made the rate of change along the surface
of the shape parameter rather than the shape paramster itself depend
on the locegl rconditions bubt 4id not make posslbles the campubaticn
of the separation point with sufficient accuracy for englneering
use (reference 23). An attempted improvement of the Gruschwitz
method by Kehl {refersnce 20) has not been tested I‘crr' 1ts ability
to predict the separation point. '

The methiod of reference 17 seems to be the most relisble mebhcd
avallable at present for the estimation of the separation point of
the turbulent boundsry layer. The method uzses two squations to
determine the behavior of a twrbulent boundary layer. The first
equation is the von Karman momentum equation ({equation (2)). The
gecond equatlon is an emplrical equation that glves the rate of
change of boundary-layer shape parameter along the surfuce ae a
function of the local conditiops. The equation For the rate of
change of boundary-layer shapé parameber was devel cped. in the
following meuner: .

It was first vei-lfied thet for the exper.irei: 21 desa ava: "lable,
the velocity profiles of the turbulent boundary layer forued a, :
gingle*parametexr family of curves with H = f(nl) as the peremeter.
The asswaption was then made that the rate of change of boundzory-"
layor shape parameter iz & function of the ratlo of the local
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pressure gradient .9_.@._‘1 to.the local’ sk:[_rt—fficgion_ éoeﬁfficient _ TO{EC}_

q dx’ : PR A
and also to the local value of E. The ratio g-%—f: has the same
. T Q- e
physical significance gs the parame'ber p in the Pohlhaasen methom

The quantities ?, %% and E were d.etermined Pron tae available
a

experimental data; the term Tolzq was calcular,ed. from the sk_’v-
frictlion formuls of referencs 214- - Fron anglysis of the e:merlmenml

éH
data, the variation of & — 'W'ith g dq 2"1
ax q ax To

ﬁd B can be re'oze—

sented by the equation .

[ Jmasd

aH eh.680(3—2-975) [.-2 ! ..2 - 2.035(® - 1. 286)] (3}
ax - - 4 4x T,

Equation (3) is solved simultaneocusly with the von Karman momentuza
equation by numerical methods. For a fixed pressure distribubion
and transition point the method indicates & slight forward movsuent -
of the separation point with increase in Reynolds nuber.

The method of Garner differs {rom that of reference 17 only by
the use of a different empirical skin-friction relation and by the
use of different constants in equation (3). The different constants
were obtained by anglyzing the experimental data in reference 1T
and adding a small amount of date from experimonts by Burl and
Nikuradse. ’

None of the methods give aﬁy informaticn on the variation of
surface friction with boundary-layer profile shepe; all use empirical
skin-friction formmlas derived from experiments with Flat pletes.

Morentum t;;_ic]mess - An approximate method for the computation
of houndary-layer momentum thicknesses that is useful for the esti-
mation of full boundary-layer thicknesses and profile-dreg coeffl-
cients when flow separation is not involved 1s given in reférence 25.
The method 1s based on the fact thet if H 18 fixed at an average

T
valus and that if a skin~friction equatiop. of the form ,E—?- = —Q-é
1 Ry

is used, the von Karman nomentum equation can be integrated The
result is a Tormila for the computation of @ .in flcows with pres- ’
gure g‘adients. .
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The game type of formula 1s epplicable to laminar bommdary
layers when the average velocity gradient is small. The formula
for leminar boundary layers has also been given in reference 26.

Roughness.~ Empirical skin-friction formulas for flow over
rough Tlat plates and. for flow in rough plpes are availsble for
certain types of roughness (reférence 1, pp. 145-154 and refer-
ences 2, 15, and 27). A characteristic of the flow over rough
surfaces with zere or small pressure gradient 1s that teyond 2
certain Reynolds number, which depends on the roughness, the skin-
friction coefficient becomes independent of .the Reynolds number
(reference 28). The skin-friction coefficlent of rough rotating
cylinders (reference 30) was found to become conamtant at suffi-
ciently large Reynolds numbers for a saturation demsity of roughness
particles. For other than saturation densities, the drag coefficient
wae concluded to decrease with Reynolds numbex.

The addition of roughmess to a gurface covered by a turbulent
boundary layer increases the drag coeffilcient when the roughness
height becomes comparable with the height of the laminar sublayer.
The addition of roughness to a smooth plate will have no effect omn

=
the surface friction if Ry 52 2 3, wvhere TOIQQ is the surface-
q- by

friction coefficient Ffor the smooth plate (reference 30).
TRANSITION

A body in a sbream usually has a laminar boundary layer for
some distance from the stagnation point and behind ths laminar
boundaery layer, a turbulent—boundary layer that extends to the
trailing edge. The process of change of the laminar boundary layer
to the turbulent boundary layer is known as tramsition. The appsar-
ance of the turbulent type of flow can be detected by the appearance
of random fluctuations in the velocity components, by the change in
veloclty profile from one having a gradual lncrease in velocit:
with distance from the walls +to one having a much move rapid rise
in velocity (fig. 6), and ty the increase in skin-iriction coeffi~
cient; 8 greater increase occurs in skin-friction cocefficient at
large Reynolds numbers than at small Reynolds numbers.

The flow conditions that are favorable for the deley of trsnsi-
tion are: a swall Reynolds number, freedem from disturbances, and
static pressure decreasing in the direction of flovw (references 31
and 32). An investigation of the effect of curvature (reference 33)
regults in the following conclugions: The mechanism of trangitlon
ig d¥fferent on concave and convex walls, the transliion point is
not affected by convex curvature, concave curvature has a strong
destabllizing effect, the influence of pressurs gradlent on transgi-
tion on a concave wall is negligible, the effect of pressure gradlent
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on trensition on convex walls is strongest nesr zero. prefuula
sradient, and stream turbulence hes aboubt the same effect on trunsi-
tion for flow over concave and convex walls.

Vhen the static pressurse increemes in the direction of flow,
the maximum poseible length of laminar flow is thw distance bebween
tiie minimum pressure point end the luminar separation point. Whether
transitlon or laminar separation occurs first depends on the Reynolds
number, the disturbances to the flow, and the streagth of the adverse
bressure gradlent. As the adverse pressure gradient becomes smaller,
the likelihood of transition occurring beforc sspareticn becores
greater; the flat plate represents the extreme case in which separe-
tl.a sever occurs.

The Iinstability of the lominar boundary lazyer on a flat plate
has beer: Snvestigated theorstically (referemce 3k) and the essentizls
of the theor, have been verified sxperimsntally (reference 35). A
process for the compubtation of tlie instability point of the laminar
boundary layer in the presence of pressure gredicnts, with examples
of the results for airfoile, is given in refereonce 36. Because it
takes soms distance for the laminsr flow to become turbulent after -
passing the instability point, the transition point is downstream
of the instability point. A comparison betwsen the experimental
transition points and the tnsaretical instability pcinhse for an .
NACA amirfoil is glven in references 36 and 37. The comparlson shows
that, as is expected from the theory, a decreasing static pressurs
in the direction of flow causes the digtance between the instability
and transition points to increase end slpo causes the instabil.lty
point tu move farther downstream st a fixed Reynolds mumber

REGIONS OF SEPARATED FLOW ON ATRFOILS

At surficiently small airfoll Reynolds numvers a reglon of
separated flow is often found that has for its forward boundary the
laminar separation point and for ite rearwvard boundery a hwoulent
boundary layer (references 38 to 4D). The usual places. of .occur-
ronce of the regicn of ssparated flow are near the leading sdge of
airfolle at high angles of attack znd behind the minimum pressure
point on airfoils which have extensive laminar boundary layeras.

Only qualitative information is available cancerning the extent
.of the reglon of seperated flow. The flow cun reattach itsel? to
the surface as a turbulent boundary layer ab some sm:ll distance
behind the point at which the laminsr brundary layvo: leaves the
surface. The extent of the region of sepsrated fivw lying between
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the laminar and turbulent boundary layers has bsen obhiuwved to
decrease with an increase ir Reynolds number (reference 40). No -
cese 1s known for which the seperated turbulent boundery layer nan
rejJoined the swrface in free flov.

The formatlon of turbulent velocity fluctustions in the fluid
layers that asre moving downstream and that asre Jjust above the reg-n
of separated flow is belleved to be important in tio formetion of a
turbulent boundary :layer behind the reglon of geprarated ilow. IR

FROFILE~DRAG COMPUTATION

The method ~f profile-drag camputation is hased on the momentum
theorem which may be. stated as Tollows: In a sbeady flow withouk
body forces the het externmal force acting in a perticulas dlrection
on the surface bounding a fixed reglon of fluid is equal in magnitudes
to the difference hetween the time rate of outflow and time rate of
inflow of momentum in the dirvection under consideration and has the
sense in which the momentum decreases.

The profile drag cun thereofore be determined 1P the difference
betwsen the time rate of outflow and time rate inflow of momentum
in the direction of flight can be determined for a reglon of fluid
bounded by the body and a surface which has & shape and distance
from the body a@c chosen that the pressures produce no reosutiant
force ¢n this surface iin the line of flight dircction. BSquirs and
Young (reference 2l) detexrmine the profile drag by computing the
momentum thickness at the airfoll truiling edge from the von Kérmn
momentum equation; then by the use of the von Farman momeptum squa-
tlon together with an asswmption concerning the vélacity profile
acrogs the wake they compute the momentum thickness very far behind
the body. The profile-drag coefficient is known once the momentum
thickness, and therefore the momentum defect, is known very for
behind the dbody. . '

The Squire and Young method is accurate o within a few percent
1f no reglons of geparated flow are present and if the irsusition
point is known. It must bo emphasized that the profile-drag coofii-
clent can be computed only when the transition point 1 kuown and
that the profile-drag coefficlent is sensitive to the pogitilon of
the transition point. ' :
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PIFE FIOW

The subject of flew in pipes has been studied exhavstively and
the knowledge of the subject may be found in many works; for example,
references 1, 2,and 15. The steady lamlnar flow in & plpe can he
computed directly from the equations of motion. Included ere ths
press'gre-?rop formulas and the velocity profile (refersnce 1,

Pp. 36-39). :

The kmowledge of turbulent flov in pipes, like that of turbulent
flow over bodies, is based on experiment. The pressurs-drop formulas
have been determined from flow experiments with smooth-wall and
rough-wall pipes (reference 1, pp. 135-1L5, and references 2 and 15).
Universal velocity-distribution formilss have been determined for
flow in smooth znd rough plpes.

The mixing-length theories of Prandtl and von Eayman make
poasible the computation of the velocity distribution across the
pipe when the surface friction is known.

DIFFUSERS |

A diffuser is a duct having an internal area that increases
with distance downstresm. Because of the increasing eres, the flow
velocity in the diffuser decreases with dlstence downstream and
therefore the static pressure in the flow increases.

A purely thearetical treatment of laminar flow In & two-
dimensional diffuser is given in refsrence 2, which states that the
results sre of theoretical interest only.

The literature for diffusers with turbulent flow is extensive;
but because no theory of turbulent flow has been established for
diffusers, the work of the various experimenters (for example gee
reference 41) has not resulted in the ability to predict the behaviar
of a given diffuser with a good degree of certainty.

FREE-MIXING PROCESSES

A Tree-mixing procese is one in which solld boundaries play no
part. Some examples of cases in which free-mixing processes occur
are Jets, wekes, and regiong in which parallel streams of different
velocities meet. The cases of turbulent-mixing processes, treated
in referenceg L2 to 45, are based upon an assumption relating the
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local shearing sitress to the characteristics of the local velocity .
profile. The equations and assumptions of these references are

(1) The equation of motion with zero static"pressure gradient
{far from bodies) .

(2) The equation of continuity

1

{3) The Prandtl eqﬁéflon for the shearipng stress

2|cu

du -
— {1}
oy o ) .

S

T = Pl

(L) The mixing length 1 proportional to the width of the
wixing reglon’

The cases treasted in refbrence 516 use for the shearlng strese the
equation

T = Dz (U ‘U'Inin U'rf (5)

instead of T = p1° au) du

d3y/ Sy
velocity profiles at extrems values of u 1is sliminated by ueing
equation (5) instead of egquation (4} dbut no better undorstanding of
the flow process results.

. The aharpness of ths calculated

Turbulent jets and wakes and turbulent flows in the presence of
boundaries have also been analyzed by considering the welocity and
pregsure fluctuatlons in the flow. An inbtroduction to this method
of investigation is given in refersnce UT.

EFFECT OF BOUNDARY LAYER-ON POTENTTIAL-FLOW
CHARACTERISTICS OF AIRFOILS

Airfoll characteristics compubed by potential-flow theory arc
known to differ from the experimentally determined characteristics.
Tho deviation from the potential~flow characteristics appears not
only in the existence of a profile drag but also in changes in the
1ift and pitching-moment characteristice. The changes are caused
by the presence of the boundary layer and ususlly increase with
increasing boundery-~layer thickness.
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The basls of the method of computation of referenne 48 is
Taylor's theorem which states that equal positlve and negative
amounits of vorticity are shed from the sirfoil trailing edge per
unit time vhen the 1lift is steady. The method of compubtation of
reference 48 in outline is approximately as follows: The potential-
flow velocity distribution over the ailrfoil is Ffound; a sultable
fairing is made at the trailing edge if necessary o aveid a
stagnation point. The boundary-layer thiclknesszes av the trailing
edge of the upper and lower surfaces are determined after choosing
the transitlon point and the Reynolds number. The velocities at
the edge of the upper-surface and lower-surface boundary layers ab
the trailing edge are then computed; when these. velocities are known
the pressure rise through the boundary layer is estimsted for both
upper and lower surfaces. If the pressure at the trailing edge im
not the same for both uppor and lower surfaces, Taylor's theorem
1s violated; the clrcylation is therefore adjusted and the procedurec
repeated until the pressures ere equal. At preuvent the computations
are oo lengthy and, without empirical correcticn factors, are too
ingccurate for routine use.

Langley Memorial Aeronaubical Laboratory
National Advisory Commlttee for Asronautles
Langley Field, Va., May 21, 1947
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APPENDIX

MATHEMATICAL DERIVATICNS

Prandtl Boundery-Layer Equations

The equations of motion in Cortesian coordinates for incom-
pressible flow are as follows:

The equation of motion'for'x*direction 1s

- > 2 2
p(uSE+v.§_u)=—P~E+H(§_.B+§~E>'
ox %/  ox \oxZ - zy2/.

L)

The equation of mobion for y-direction is

~
?—+Sj-=0
dx dy

For the boundary layer, the equations becaue the Prandtl boundary -
layer equations; thus

- 2
o (? 22 + v éﬂ) = - o + B 9%u (£1)
ox Sy ox dy2
3
0 = == A2
S _ (a2)
and
on + éX = 0
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Equations (Al) and (A2} are valid when the pressure i constzunt
across the thickness of the boundary layer, when thé ratio of tie
boundary~layer thickness to the curvabure of the swrface is .
negligible, and when all viscous texrms imvolving sither v or
derivatives with respect to x are negligible. For flows about
alrfolls at normal anglea of attack and about plates at zero angle of
attack these conditions are gccurate over mwst of the length of

the surface. Regilons whers the conditions may not be accurate are

in the vicinity of stegnation points and in the vicinity of the
separation point. ,

Derivetion of the von Kaymin Momentum Equation

B
bé(/
-7 a
pP—> % e\————-——-—-p+——2Ax

[

[}
1
|

Continuity

The mass leaving box abed equals the mass entering box abced.
The mass entering per unit time through &b is egual to

3]

pu dy
0

The mass leaving per unit time through cd is equal to

8 a]
.
pu + AX = pu
dy i day
0 ¢o
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Therefore, the masa’ entering Per wnit time through bc 18 equsl to
& , . & .\ [/ps -\ . 8
: a _ 3
) — - z AX e 11
pu dy + &x = | pu dy | pudy e pu dy

Application of Momentum Theorem

The net change in momentum per unit time in the x-direction
equals the net force acting to right on box in the x-direction.
The x-momentum entering per unit time through &b is glven by

3]
ou2 dy
vo

The x-momentum entering per unit time through be is given by

{!8
UAx&-
dx

l pu dy
o

The x-momentum leaving through cd 13 given Dby

1X:] 3
2 N d 2
pu” dy - Axdx Qu &y
yo . . O-

Net BExcess of x-Momentum Leaving to Right
over That Entering from Left

The net excess of x-momenbum lea'ving 40 right over that
entering from left 1s given by

8 3 5 ' 8
puedy-k-Axé_. pugdy - puedy'-'UAx—d- pu dy
ax dx
to 0 0 0
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Net Forces Acting to Right on Box
The pressure acting to the right on the box is given by

sin o

P® +p
coB o

The pressure acting to the left on the box is glven by
kS -.d.'.?i_a. FAN S .
The skin friction to the lseft on the box is given by

TO'Ax

Therefore, the net force acting to the right on the box is given by
dpb

p8+prtana,—p5-E£—Ax—'r AN

: x

”hen, since the net change in momentum in the x-dlroction

equals net force acting to right on box,

5] 8
Axg'—- puedy-U—d—- bud;f
dx dx
0 0
Bpx-r ax
ax G

= Ax -8_2.[53-.-
p &x ten @ - 8 2 P

vhere
tan a =

Bl&
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Then
3 S5
Axgz_ puady-Ug'— pu 4y =-Ax<8§-‘2+1‘0)
dx ax dx
0 Q
or
ns o)
9-.- 2 - _q'__ __.ai-.!i_—',‘i_ A
dxo pu” dy Uﬁxo pu 4y = P o (A3)
{

After the definitions

5
1% = w(U - u) dy
uo
and
15
US¥ = (U - u) dy
/0

have been used, equation (A3) can be written as.

R (ah)
dx ax o

If the equation of motion for inviscld flow that is true outside

dp au aree

the bowndary layer, i = = U e is used and the term is

split into two terms, equation (A4} can be written as

9_@_,,6(3+29.9),1e,
dx U ax pUe
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The von Ksrmén equation is often written in this form. By using
the Bernoulll equation to relate the statlc.and qynamic pressure

outside the boundary layer, <L = . %, equation (Al) may eiso be

dx
written as
@, E+r2edg To
dx g dx 2g

N

Derivation of the Expression for the Velocity Profile
in the Pohlhauvsen Method
Tet the boundary-layer velocity prorile be given by & fourth-
degree polynonial '

U= ay + by2 * cy3 + d,yh

The values of the coefficlents are debtermined Irom the form
taken by the equation of motion at the wall and from the sssumpbion
that all viscous effects are confined to a thin boundery layer.

At the wall, u=v =0, 2and so the squation of motion

ox Jdy dx 35
becomes
Fu) _1a
2y podx
y-_-.O

Because all viscous effects are assumed bo be abgent oubside

the boundery layer, T = % = 0 outside the boundsry layer. There-

su du  2°m

p —, it follows that — = —= = 0.
y 3 32

fore, at y =93 with

From the definition of & it also follows that u = U.
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By using these four conditions, four simultaneous linear equa-
tiong are shtained from which &, b, c, and d sre €valuated. The
ragult is : o

s = (12 + A)
68
B o = O
287
o= - Uk - 2)
283
d = 6 - 2) )
ke
' &° au
whers A, <the velocity profile shape paramebter, equals e The

expression for the veloclty profile thereforo bscomes -

22006 2@ 2 )
U & \8/ 2\® 2 A8/ 7§ \B

and the surface gheaying stress 1 _ = p(.@."l) ig
o Ly
=0
ro=p LA R
o 8 6
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or

In order to show thet N « -

use the dsfinition of A,

and
dp
dx
It follows that
no B1 d_
v pU dx
Then, from
To

31
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ani so
N «-2003
TOEQ_d.x
or
g 32
A ox - X
TO

To show that X is independent of R,

a I

' (6)2 Uy UL
“\e/ axfe v

2
A= &
v ax

a3
Ug

@)
= —- Rc
dx/c N

but (see p. 13)

1

[

B

[+ R Ke?)

therefors,
a U
Uo

A«
ax/c

Consequently when the pressure dlatribution doea not change with
A 1is independent of RC.

o2}
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Figure 2.- Boundary layer.
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